1839302
2DH6J37C
2025
1
surface-science-reports
50
creator
asc
23850
https://www-ipcms.u-strasbg.fr/plugins/zotpress/
%7B%22status%22%3A%22success%22%2C%22updateneeded%22%3Afalse%2C%22instance%22%3Afalse%2C%22meta%22%3A%7B%22request_last%22%3A0%2C%22request_next%22%3A0%2C%22used_cache%22%3Atrue%7D%2C%22data%22%3A%5B%7B%22key%22%3A%22B2JAXSCM%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Aloui%20et%20al.%22%2C%22parsedDate%22%3A%222025%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EE.%20Aloui%2C%20J.%20Beurton%2C%20C.%20Medemblik%2C%20L.%20Hugoni%2C%20I.%20Clarot%2C%20A.%20Boudier%2C%20Y.%20Arntz%2C%20M.%20De%20Giorgi%2C%20J.%20Combet%2C%20G.%20Fleith%2C%20E.%20Mathieu%2C%20N.%20Kharouf%2C%20L.%20Kocgozlu%2C%20B.%20Heinrich%2C%20D.%20Favier%2C%20M.%20Brender%2C%20F.%20Boulmedais%2C%20P.%20Schaaf%2C%20B.%20Frisch%2C%20P.%20Lavalle%2C%20Salt-Compact%20Albumin%20as%20a%20New%20Pure%20Protein-based%20Biomaterials%3A%20From%20Design%20to%20In%20Vivo%20Studies%2C%20Advanced%20Healthcare%20Materials%20%282025%29%202403385.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fadhm.202403385%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fadhm.202403385%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Salt-Compact%20Albumin%20as%20a%20New%20Pure%20Protein-based%20Biomaterials%3A%20From%20Design%20to%20In%20Vivo%20Studies%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eya%22%2C%22lastName%22%3A%22Aloui%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jordan%22%2C%22lastName%22%3A%22Beurton%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Claire%22%2C%22lastName%22%3A%22Medemblik%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ludivine%22%2C%22lastName%22%3A%22Hugoni%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Igor%22%2C%22lastName%22%3A%22Clarot%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ariane%22%2C%22lastName%22%3A%22Boudier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Youri%22%2C%22lastName%22%3A%22Arntz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Marcella%22%2C%22lastName%22%3A%22De%20Giorgi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jerome%22%2C%22lastName%22%3A%22Combet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Guillaume%22%2C%22lastName%22%3A%22Fleith%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Eric%22%2C%22lastName%22%3A%22Mathieu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Naji%22%2C%22lastName%22%3A%22Kharouf%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Leyla%22%2C%22lastName%22%3A%22Kocgozlu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Benoit%22%2C%22lastName%22%3A%22Heinrich%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Damien%22%2C%22lastName%22%3A%22Favier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%22%2C%22lastName%22%3A%22Brender%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fouzia%22%2C%22lastName%22%3A%22Boulmedais%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pierre%22%2C%22lastName%22%3A%22Schaaf%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Benoit%22%2C%22lastName%22%3A%22Frisch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Philippe%22%2C%22lastName%22%3A%22Lavalle%22%7D%5D%2C%22abstractNote%22%3A%22Current%20biodegradable%20materials%20are%20facing%20many%20challenges%20when%20used%20for%20the%20design%20of%20implantable%20devices%20because%20of%20shortcomings%20such%20as%20toxicity%20of%20crosslinking%20agents%20and%20degradation%20derivatives%2C%20limited%20cell%20adhesion%2C%20and%20limited%20immunological%20compatibility.%20Here%2C%20a%20class%20of%20materials%20built%20entirely%20of%20stable%20protein%20is%20designed%20using%20a%20simple%20protocol%20based%20on%20salt-assisted%20compaction%20of%20albumin%2C%20breaking%20with%20current%20crosslinking%20strategies.%20Salt-assisted%20compaction%20is%20based%20on%20the%20assembly%20of%20albumin%20in%20the%20presence%20of%20high%20concentrations%20of%20specific%20salts%20such%20as%20sodium%20bromide.%20This%20process%20leads%2C%20surprisingly%2C%20to%20water-insoluble%20handable%20materials%20with%20high%20preservation%20of%20their%20native%20protein%20structures%20and%20Young%27s%20modulus%20close%20to%20that%20of%20cartilage%20%280.86%20MPa%29.%20Furthermore%2C%20these%20materials%20are%20non-cytotoxic%2C%20non-inflammatory%2C%20and%20in%20vivo%20implantations%20%28using%20models%20of%20mice%20and%20rabbits%29%20demonstrate%20a%20very%20slow%20degradation%20rate%20of%20the%20material%20with%20excellent%20biocompatibility%20and%20absence%20of%20systemic%20inflammation%20and%20implant%20failure.%20Therefore%2C%20these%20materials%20constitute%20promising%20candidates%20for%20the%20design%20of%20biodegradable%20scaffolds%20and%20drug%20delivery%20systems%20as%20an%20alternative%20to%20conventional%20synthetic%20degradable%20polyester%20materials.%22%2C%22date%22%3A%222025%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1002%5C%2Fadhm.202403385%22%2C%22ISSN%22%3A%222192-2640%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1002%5C%2Fadhm.202403385%22%2C%22collections%22%3A%5B%222DH6J37C%22%2C%22TK3HH32E%22%5D%2C%22dateModified%22%3A%222025-02-13T13%3A07%3A21Z%22%7D%7D%2C%7B%22key%22%3A%22WWUDTTR8%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Fortier%20et%20al.%22%2C%22parsedDate%22%3A%222025%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EL.%20Fortier%2C%20C.%20Lefebvre%2C%20N.%20Hoffmann%2C%20Red%20light%20excitation%3A%20illuminating%20photocatalysis%20in%20a%20new%20spectrum.%2C%20Beilstein%20Journal%20of%20Organic%20Chemistry%2021%20%282025%29%20296%26%23x2013%3B326.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3762%5C%2Fbjoc.21.22%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3762%5C%2Fbjoc.21.22%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Red%20light%20excitation%3A%20illuminating%20photocatalysis%20in%20a%20new%20spectrum.%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lucas%22%2C%22lastName%22%3A%22Fortier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Corentin%22%2C%22lastName%22%3A%22Lefebvre%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Norbert%22%2C%22lastName%22%3A%22Hoffmann%22%7D%5D%2C%22abstractNote%22%3A%22Red-light-activated%20photocatalysis%20has%20become%20a%20powerful%20approach%20for%20achieving%20sustainable%20chemical%20transformations%2C%20combining%20high%20efficiency%20with%20energy-saving%2C%20mild%20conditions.%20By%20harnessing%20the%20deeper%20penetration%20and%20selectivity%20of%20red%20and%20near-infrared%20light%2C%20this%20method%20minimizes%20the%20side%20reactions%20typical%20of%20higher-energy%20sources%2C%20making%20it%20particularly%20suited%20for%20large-scale%20applications.%20Recent%20advances%20highlight%20the%20unique%20advantages%20of%20both%20metal-based%20and%20metal-free%20catalysts%20under%20red-light%20irradiation%2C%20broadening%20the%20range%20of%20possible%20reactions%2C%20from%20selective%20oxidations%20to%20complex%20polymerizations.%20In%20biological%20contexts%2C%20red-light%20photocatalysis%20enables%20innovative%20applications%20in%20phototherapy%20and%20controlled%20drug%20release%2C%20exploiting%20its%20tissue%20penetration%20and%20low%20cytotoxicity.%20Together%2C%20these%20developments%20underscore%20the%20versatility%20and%20impact%20of%20red-light%20photocatalysis%2C%20positioning%20it%20as%20a%20cornerstone%20of%20green%20organic%20chemistry%20with%20significant%20potential%20in%20synthetic%20and%20biomedical%20fields.%22%2C%22date%22%3A%222025%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.3762%5C%2Fbjoc.21.22%22%2C%22ISSN%22%3A%221860-5397%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F%22%2C%22collections%22%3A%5B%222DH6J37C%22%2C%22IEGKATUQ%22%5D%2C%22dateModified%22%3A%222025-02-17T13%3A01%3A05Z%22%7D%7D%2C%7B%22key%22%3A%22HK2GXXIC%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Guchait%20et%20al.%22%2C%22parsedDate%22%3A%222025%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3ES.%20Guchait%2C%20S.%20Oummouch%2C%20P.%20Durand%2C%20N.%20Kamatham%2C%20B.%20Jismy%2C%20L.%20Herrmann%2C%20S.%20M%26%23xE9%3Bry%2C%20N.%20Leclerc%2C%20M.%20Brinkmann%2C%20Impact%20of%20Side%20Chain%20Chemical%20Structure%20on%20Doping%20and%20Thermoelectric%20Properties%20of%20Oriented%20PBTTT%20Thin%20Films%2C%20Small%2021%20%282025%29%202410073.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fsmll.202410073%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1002%5C%2Fsmll.202410073%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Impact%20of%20Side%20Chain%20Chemical%20Structure%20on%20Doping%20and%20Thermoelectric%20Properties%20of%20Oriented%20PBTTT%20Thin%20Films%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Shubhradip%22%2C%22lastName%22%3A%22Guchait%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Said%22%2C%22lastName%22%3A%22Oummouch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pablo%22%2C%22lastName%22%3A%22Durand%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Narayanaswamy%22%2C%22lastName%22%3A%22Kamatham%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Badr%22%2C%22lastName%22%3A%22Jismy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Laurent%22%2C%22lastName%22%3A%22Herrmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Stephane%22%2C%22lastName%22%3A%22M%5Cu00e9ry%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nicolas%22%2C%22lastName%22%3A%22Leclerc%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Martin%22%2C%22lastName%22%3A%22Brinkmann%22%7D%5D%2C%22abstractNote%22%3A%22In%20this%20contribution%2C%20doping%20of%20oriented%20thin%20films%20is%20investigated%20for%20three%20PBTTT%20polymers%20bearing%20different%20side%20chains%20including%20linear%20alkyl%20%26%20horbar%3B%28CH2%2912%20%26%20horbar%3BH%2C%20single%20ether%20%26%20horbar%3B%28CH2%297%20%26%20horbar%3BO%20%26%20horbar%3B%28CH2%294%20%26%20horbar%3BH%20and%20alkyl-siloxane%20%26%20horbar%3B%28CH2%295%20%26%20horbar%3B%28Si%28CH3%292O%292%20%26%20horbar%3BSi%28CH3%293%20A%20combination%20of%20transmission%20electron%20microscopy%2C%20polarized%20UV-vis-NIR%20spectroscopy%20and%20transport%20measurements%20helps%20uncover%20the%20essential%20role%20of%20the%20chemical%20nature%20of%20side%20chains%20on%20the%20efficacy%20of%20the%20doping%20and%20on%20the%20resulting%20thermoelectric%20performances%20in%20oriented%20PBTTT%20films.%20Siloxane%20side%20chains%20help%20to%20reach%20record%20alignment%20level%20of%20PBTTT%20with%20dichroic%20ratio%20beyond%2050%20for%20an%20optimized%20rubbing%20temperature%20but%20they%20impede%20effective%20doping%20of%20PBTTT%20crystals%20with%20F6TCNNQ%2C%20resulting%20in%20very%20poor%20TE%20properties.%20By%20contrast%2C%20doping%20the%20amorphous%20phase%20of%20all%20three%20PBTTTs%20with%20magic%20blue%20%28MB%29%20results%20in%20excellent%20TE%20performances.%20Both%2C%20chemical%20nature%20of%20side%20chains%20and%20semi-crystalline%20structure%20of%20the%20polymer%20determine%20the%20efficacy%20of%20doping.%20The%20use%20of%20siloxane%20side%20chains%20further%20impacts%20the%20scaling%20laws%20S%20proportional%20to%20sigma-1%5C%2Fs%20between%20the%20Seebeck%20coefficient%20S%20and%20the%20charge%20conductivity%20sigma.%20An%20unexpected%20s%20%3D%202%20exponent%20is%20observed%20and%20tentatively%20attributed%20to%20the%20dimensionality%20of%20charge%20transport%20in%20the%20highly%20oriented%20mesophase%20of%20PBTTT.%22%2C%22date%22%3A%222025%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1002%5C%2Fsmll.202410073%22%2C%22ISSN%22%3A%221613-6810%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1002%5C%2Fsmll.202410073%22%2C%22collections%22%3A%5B%222DH6J37C%22%2C%22VYTETDZF%22%5D%2C%22dateModified%22%3A%222025-02-25T14%3A17%3A45Z%22%7D%7D%2C%7B%22key%22%3A%22Z5QV2LL8%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Henning%20et%20al.%22%2C%22parsedDate%22%3A%222025%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EX.%20Henning%2C%20L.%20Schlur%2C%20L.%20Wendling%2C%20T.%20Fix%2C%20S.%20Colis%2C%20A.%20Dinia%2C%20M.%20Alexe%2C%20M.V.%20Rastei%2C%20Interfacial%20photovoltaic%20effects%20in%20ferroelectric%20%5C%5CmathrmBi_2%5C%5CmathrmFeCrO_6%20thin%20films%2C%20Physical%20Review%20Materials%209%20%282025%29%20024403.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevMaterials.9.024403%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1103%5C%2FPhysRevMaterials.9.024403%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Interfacial%20photovoltaic%20effects%20in%20ferroelectric%20%5C%5CmathrmBi_2%5C%5CmathrmFeCrO_6%20thin%20films%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xavier%22%2C%22lastName%22%3A%22Henning%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Laurent%22%2C%22lastName%22%3A%22Schlur%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Wendling%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thomas%22%2C%22lastName%22%3A%22Fix%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Silviu%22%2C%22lastName%22%3A%22Colis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Aziz%22%2C%22lastName%22%3A%22Dinia%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Alexe%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mircea%20V.%22%2C%22lastName%22%3A%22Rastei%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222025%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1103%5C%2FPhysRevMaterials.9.024403%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.aps.org%5C%2Fdoi%5C%2F10.1103%5C%2FPhysRevMaterials.9.024403%22%2C%22collections%22%3A%5B%222DH6J37C%22%2C%22CF4ZI7HM%22%2C%22SB8Q592R%22%2C%22IEGKATUQ%22%5D%2C%22dateModified%22%3A%222025-02-13T15%3A39%3A36Z%22%7D%7D%2C%7B%22key%22%3A%22JK6VXUAG%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Liu%20et%20al.%22%2C%22parsedDate%22%3A%222025%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EX.%20Liu%2C%20V.%20Placide%2C%20L.%20Chu%2C%20K.M.%20Haidaraly%2C%20L.S.%20Vargas%2C%20C.%20Adachi%2C%20J.W.%20Wu%2C%20B.%20Heinrich%2C%20E.%20Lacaze%2C%20W.%20Yan%2C%20A.%20D%26%23x2019%3BAleo%2C%20F.%20Mathevet%2C%20Investigation%20and%20modulation%20of%20charge%20transport%20properties%20with%20thin%20films%20of%20an%20isoindigo-based%20donor-acceptor%20molecular%20semiconductor%2C%20Applied%20Surface%20Science%20686%20%282025%29%20162057.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.apsusc.2024.162057%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.apsusc.2024.162057%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Investigation%20and%20modulation%20of%20charge%20transport%20properties%20with%20thin%20films%20of%20an%20isoindigo-based%20donor-acceptor%20molecular%20semiconductor%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Xiao%22%2C%22lastName%22%3A%22Liu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Virginie%22%2C%22lastName%22%3A%22Placide%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Liang%22%2C%22lastName%22%3A%22Chu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kevin%20Mall%22%2C%22lastName%22%3A%22Haidaraly%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lydia%20Sosa%22%2C%22lastName%22%3A%22Vargas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Chihaya%22%2C%22lastName%22%3A%22Adachi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jeong%20Weon%22%2C%22lastName%22%3A%22Wu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Benoit%22%2C%22lastName%22%3A%22Heinrich%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emmanuelle%22%2C%22lastName%22%3A%22Lacaze%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wensheng%22%2C%22lastName%22%3A%22Yan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Anthony%22%2C%22lastName%22%3A%22D%27Aleo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fabrice%22%2C%22lastName%22%3A%22Mathevet%22%7D%5D%2C%22abstractNote%22%3A%22Charge%20mobility%20plays%20a%20crucial%20role%20in%20determining%20the%20performance%20of%20organic%20semiconducting%20devices.%20Organic%20semiconductors%20%28OSCs%29%20based%20on%20donor-acceptor%20%28D-A%29%20small%20molecules%20generally%20have%20planar%20backbones%20that%20facilitate%20charge%20transport.%20However%2C%20their%20hole%20transport%20property%20in%20thin%20film%20transistors%20%28TFTs%29%20still%20required%20to%20be%20further%20improved%2C%20and%20simultaneously%20achieving%20electron%20transport%20alongside%20hole%20transport%20remains%20a%20great%20challenge%20due%20to%20the%20presence%20of%20electron%20traps%20on%20the%20substrate%20surface.%20In%20this%20study%2C%20an%20isoindigo-based%20oligothiophene%20that%20is%20a%20D-A%20small%20molecule%2C%20was%20synthesized%20and%20employed%20as%20an%20active%20layer%20in%20TFTs.%20The%20impact%20of%20thermal%20annealing%20on%20the%20structure%2C%20morphology%20and%20charge%20transport%20properties%20of%20its%20thin%20films%20was%20investigated.%20By%20implementing%20a%20facile%20surface%20engineering%2C%20electron%20traps%20on%20the%20SiO2%20dielectric%20surface%20were%20effectively%20eliminated.%20As%20a%20result%2C%20the%20charge%20transport%20behavior%20in%20the%20TFTs%20was%20successfully%20transformed%20from%20solely%20p-type%20to%20ambipolar%20characteristics.%20This%20accomplishment%20holds%20great%20significance%20for%20the%20advancement%20of%20optoelectronic%20devices%20in%20which%20both%20p-type%20and%20n-type%20conduction%20are%20harnessed.%22%2C%22date%22%3A%222025%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1016%5C%2Fj.apsusc.2024.162057%22%2C%22ISSN%22%3A%220169-4332%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1016%5C%2Fj.apsusc.2024.162057%22%2C%22collections%22%3A%5B%222DH6J37C%22%2C%22VYTETDZF%22%5D%2C%22dateModified%22%3A%222025-02-12T08%3A46%3A20Z%22%7D%7D%2C%7B%22key%22%3A%22TFYZDVJV%22%2C%22library%22%3A%7B%22id%22%3A1839302%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Pesqueira%20et%20al.%22%2C%22parsedDate%22%3A%222025%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%201.35%3B%20%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%20style%3D%5C%22clear%3A%20left%3B%20%5C%22%3E%5Cn%20%20%20%20%3Cdiv%20class%3D%5C%22csl-left-margin%5C%22%20style%3D%5C%22float%3A%20left%3B%20padding-right%3A%200.5em%3B%20text-align%3A%20right%3B%20width%3A%201em%3B%5C%22%3E%5B1%5D%3C%5C%2Fdiv%3E%3Cdiv%20class%3D%5C%22csl-right-inline%5C%22%20style%3D%5C%22margin%3A%200%20.4em%200%201.5em%3B%5C%22%3EN.M.%20Pesqueira%2C%20F.%20Morlet-Savary%2C%20M.%20Schmitt%2C%20A.%20Jouaiti%2C%20B.E.%20Goi%2C%20M.%20Mauro%2C%20J.%20Lalevee%2C%20Heteroleptic%20Copper%28I%29%20Complexes%20with%20Pyridine-Benzothiazole%20Ligands%20as%20Photocatalysts%20for%20Free%20Radical%20Photopolymerization%20and%203D%20Printing%2C%20ACS%20Applied%20Polymer%20Materials%20Early%20access%20%282025%29.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsapm.4c04066%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1021%5C%2Facsapm.4c04066%3C%5C%2Fa%3E.%3C%5C%2Fdiv%3E%5Cn%20%20%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Heteroleptic%20Copper%28I%29%20Complexes%20with%20Pyridine-Benzothiazole%20Ligands%20as%20Photocatalysts%20for%20Free%20Radical%20Photopolymerization%20and%203D%20Printing%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Naralyne%20M.%22%2C%22lastName%22%3A%22Pesqueira%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fabrice%22%2C%22lastName%22%3A%22Morlet-Savary%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%22%2C%22lastName%22%3A%22Schmitt%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Abdelaziz%22%2C%22lastName%22%3A%22Jouaiti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Beatriz%20E.%22%2C%22lastName%22%3A%22Goi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matteo%22%2C%22lastName%22%3A%22Mauro%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jacques%22%2C%22lastName%22%3A%22Lalevee%22%7D%5D%2C%22abstractNote%22%3A%22Copper%28I%29%20complexes%20have%20attracted%20considerable%20attention%20as%20efficient%20redox%20photocatalysts%20%28PCs%29%20in%20photopolymerization.%20In%20this%20study%2C%20two%20copper%28I%29%20complexes%20bearing%20a%20pyridine-benzothiazole%20ligand%20were%20thoroughly%20investigated%20as%20photocatalysts%20for%20the%20free%20radical%20photopolymerization%20of%20ethoxylated%20trimethylolpropane%20triacrylate%20under%20violet%20and%20green%20light%20irradiation.%20A%20three-component%20system%20comprising%20a%20copper%20complex%2C%20di-tert-butyl-diphenyl%20iodonium%20hexafluorophosphate%2C%20and%20ethyl%20dimethylaminobenzoate%20as%20additives%20was%20investigated%20under%20various%20conditions.%20The%20copper%20complexes%20exhibited%20remarkable%20photoinitiation%20capabilities%2C%20achieving%20high%20monomer%20conversion%20rates%20and%20highlighting%20significant%20structure-reactivity%20relationships.%20Based%20on%20free%20energy%20calculations%20and%20spectroscopic%20analyses%2C%20a%20mechanistic%20pathway%20was%20proposed.%20The%20optimal%20conditions%20were%20successfully%20applied%20in%203D%20printing%2C%20producing%20smooth%20and%20uniform%203D%20structures.%22%2C%22date%22%3A%222025%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.1021%5C%2Facsapm.4c04066%22%2C%22ISSN%22%3A%222637-6105%22%2C%22url%22%3A%22http%3A%5C%2F%5C%2Fdx.doi.org%5C%2F10.1021%5C%2Facsapm.4c04066%22%2C%22collections%22%3A%5B%222DH6J37C%22%2C%22ITCCYZMF%22%5D%2C%22dateModified%22%3A%222025-02-25T14%3A39%3A31Z%22%7D%7D%5D%7D
[1]
E. Aloui, J. Beurton, C. Medemblik, L. Hugoni, I. Clarot, A. Boudier, Y. Arntz, M. De Giorgi, J. Combet, G. Fleith, E. Mathieu, N. Kharouf, L. Kocgozlu, B. Heinrich, D. Favier, M. Brender, F. Boulmedais, P. Schaaf, B. Frisch, P. Lavalle, Salt-Compact Albumin as a New Pure Protein-based Biomaterials: From Design to In Vivo Studies, Advanced Healthcare Materials (2025) 2403385. https://doi.org/10.1002/adhm.202403385.
[1]
L. Fortier, C. Lefebvre, N. Hoffmann, Red light excitation: illuminating photocatalysis in a new spectrum., Beilstein Journal of Organic Chemistry 21 (2025) 296–326. https://doi.org/10.3762/bjoc.21.22.
[1]
S. Guchait, S. Oummouch, P. Durand, N. Kamatham, B. Jismy, L. Herrmann, S. Méry, N. Leclerc, M. Brinkmann, Impact of Side Chain Chemical Structure on Doping and Thermoelectric Properties of Oriented PBTTT Thin Films, Small 21 (2025) 2410073. https://doi.org/10.1002/smll.202410073.
[1]
X. Henning, L. Schlur, L. Wendling, T. Fix, S. Colis, A. Dinia, M. Alexe, M.V. Rastei, Interfacial photovoltaic effects in ferroelectric \mathrmBi_2\mathrmFeCrO_6 thin films, Physical Review Materials 9 (2025) 024403. https://doi.org/10.1103/PhysRevMaterials.9.024403.
[1]
X. Liu, V. Placide, L. Chu, K.M. Haidaraly, L.S. Vargas, C. Adachi, J.W. Wu, B. Heinrich, E. Lacaze, W. Yan, A. D’Aleo, F. Mathevet, Investigation and modulation of charge transport properties with thin films of an isoindigo-based donor-acceptor molecular semiconductor, Applied Surface Science 686 (2025) 162057. https://doi.org/10.1016/j.apsusc.2024.162057.
[1]
N.M. Pesqueira, F. Morlet-Savary, M. Schmitt, A. Jouaiti, B.E. Goi, M. Mauro, J. Lalevee, Heteroleptic Copper(I) Complexes with Pyridine-Benzothiazole Ligands as Photocatalysts for Free Radical Photopolymerization and 3D Printing, ACS Applied Polymer Materials Early access (2025). https://doi.org/10.1021/acsapm.4c04066.