Mircea RASTEI

Mircea RASTEI

Maître de conférences, Matériaux Organiques (DMO)Mircea.Rastei@ipcms.unistra.fr
Tél: +33(0)3 88 10 70 43Bureau: 2042

LATEST NEWS:

new article (selected as editors’ suggestion) Interfacial photovoltaic effects in ferroelectric Bi2FeCrO6thin films, X. Henning,  L. Schlur, L. Wendling, T. Fix, S. Colis, A. Dinia, M. Alexe, and M. V. Rastei, Phys. Rev. Mater. (2025) pdf

new article Oxygen vacancy effects on polarization switching of ferroelectric Bi2FeCrO6 thin films, X. Henning, K. Alhada-Lahbabi, D. Deleruyelle, B. Gautier, L. Schlur, T. Fix, S. Colis, A. Dinia, and M. V. Rastei, Phys. Rev. Mater. (2024) pdf

PhD thesis defense of X. Henning, Optoelectronic properties of Bi2FeCrO6 ferroelectric thin films (09 Oct. 2024)

article Photovoltaic and photothermal effects induced by visible laser radiation in atomic force microscopy probes, M. D Pichois , X. Henning, M. A. Hurier, M. Vomir, A. Barsella, L. Mager, B. Donnio, J. L. Gallani, and M. V. Rastei, Ultramicroscopy (2022) pdf

article Structural properties and polarization switching of epitaxial Bi2FeCrO6 thin films grown on La2/3Sr1/3MnO3/ SrTiO3 (111) substrates, L. Wendling, X. Henning, F. Roulland, M. Lenertz, G. Versini, L. Schlur, U. Chung, A. Dinia, S. Colis, and M.V. Rastei, Thin Solid Films (2022) pdf

PhD thesis defense of M. D. Pichois, Développement de la microscopie à force photo-induite dans le domaine spectral du visible (24 May 2022)

article Detection of Magnetic Force Fields at Macroscopic Distances with a Micromechanical Cantilever, C. Iacovita M. Vomir, B. Donnio, J. L. Gallani, and M.V. Rastei, Sensors and Actuators A: Physical (2022) pdf

– article Imaging Large Iron-Oxide Nanoparticle Clusters by Field-Dependent Magnetic Force Microscopy, C. Iacovita, R. Dudric,  M. Vomir, O. Ersen, B. Donnio, J. L. Gallani, and M.V. Rastei, J. Phys. Chem. C  (2021) pdf

article Photothermal Plasmonic Actuation of Micromechanical Cantilever Beams, M.D. Pichois, M.A. Hurier, M. Vomir, A. Barsella, B. Donnio, J. L. Gallani, and M.V. Rastei, Phys. Rev. Appl. 15, 034020 (2021) pdf

– PhD Thesis defense of M. A. Hurier Imagerie et spectroscopie à l’échelle nanométrique de couches de nanoparticules métalliques avec un microscope à force atomique (21 September 2021)

RESEARCH:
-Electronic, magnetic, optical, and quantum mechanical properties of nanostructures
-Discretization of interaction between solid state nanostructures
-Transition state théories with versatile atomic and nanoscale interaction potentials
-Interaction of visible light with mechanical systems – optomechanics… read more

TEACHING:
-Electron and scanning probe microscopy and spectroscopy (master 1 and 2 level lectures)
-Thermodynamics lectures (2nd and 3rd year physicists)
-Electronic band structure of solids (4th year)
-Surface physics (M1 level)
-Solid-state physics, Optics, Vacuum technics, Electron transport, Heat dissipation… (3rd year )
-Physics Labs (1st, 2nd and 3rd year physicists)… read more

INSTRUMENTATION:
-We are using atomic force microscopy (AFM) to study physical and chemical properties of nanomaterials.  We are currently developing several photoinduced atomic force microscopy/spectroscopy techniques in visible spectral range (hν-CAFM, hν-KPFM, hν-PFM, PiFM-vis) by combining optical absorption spectroscopy (350 – 900 nm) with AFM force sensing… read more

INSTRUMENTATION:
Our instrumentation comprises two Atomic Force Microscopes (AFM), one operating in vacuum (left-hand side), and a second one (right-hand side) in ambient conditions. Both microscopes are now coupled to wavelength tunable lasers for external optical excitations. The first microscope is also coupled to a vacuum preparation chamber which is specially designed for tip, cantilever and sample preparation. The chamber includes ion bombardment guns, a variable temperature sample holder (90K – 1600K), and various tools for atom, molecule and nanoparticle deposition. Samples and probes can be transferred into the microscope without exposure to atmospheric conditions. Measurements as a function of wavelength (350 – 900 nm), temperature, optical power, magnetic/electric fields, and a large variety of gas partial pressures are possible.

The operation mode can be interchanged between: PiFM-Vis imaging/spectroscopy, FFM imaging, EFS spectroscopy, PFM piezo-response force microscopy, KPFM and IFS microscopy/spectroscopy, AFS adhesion spectroscopy, MFM and STM imaging.  The equipment is also used for manipulation of single nanoobjects on surfaces and for nanoscale lithography. A high magnetic field gradient system consisting in a magnetic circuitry assembled on sample holders is available.

MARKING RESULTS:

-Control of ferroelectric polarization states: Phys. Rev. Mat. (2024), pdf
-Plasmon-driven microcantilevers : Phys. Rev. Appl. (2021), pdf
-Photovoltaic and photothermal effects in microcantilevers : PRL (2020), pdf
-Magnetic field of NPs clusters : Nanoscale (2020), pdf
-Magnetism in single NPs chains : Adv. Funct. Mater, 1903927 (2019) pdf
-Photoinduced force spectroscopy : Phys. Rev. Appl. 11, 044066 (2019) pdf
-Thermal effects on van der Waals forces: PRB, 93, 035424 (2016) pdf
-Stochastic nanoscale friction on oxides: Nanotechnology, 27, 055402 (2016) pdf
-Nanoscale friction domains on graphite : PRB, 90, 041409(R) (2014) pdf
-Plasmonic couplings between nanoparticles : Nanoscale, 6, 12080 (2014) pdf
-Puckering stick-slip of a sliding nanoscale contact : PRL, 111, 084301 (2013) pdf
-Kondo effect in a quantum point contact: PRL, 108, 266803 (2012) pdf
-Negative differential resistance of a single molecule: PRL, 107, 246801 (2011) pdf
-Modification of Shockley (111) surface states : PRL, 107, 216801 (2011) pdf
-Probing the spin of a single molecule : PRL, 101, 116602 (2008) pdf
-Effect of atomic-bonds relaxations in nanoparticles : PRL, 99, 246102 (2007) pdf
-Structure and magnetism of a single nanoparticle : APL, 87, 222505 (2005) pdf
-Electrochemical growth of nanoparticles : APL, 85, 2050 (2004) pdf